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The meta-analytic techniques to synthesize related studies have been widely used in the

social sciences. One of common approaches before estimating a mean effect size is to test if the

effect sizes share a common population effect size. If the effect sizes do not share a common

population effect size then sensitivity analyses are conducted to examine the influence of

particular studies on combined effect size estimate. The homogeneity test provided by Hedges

(1982) in meta-analysis has been widely used to test mainly if the effect sizes share same

variance.

One typical feature of meta-analyses is treating multiple outcomes from single samples

as if they were independent in calculating a grand mean effect size. Ignoring the

intercorrelations among effect sizes affects the Type I error rate (Raudenbush, Becker, &

Kalaian, 1988). The author's latest research showed that typical meta-analyses had a tendency

of more significant results in homogeneity test, and categorical and regression analyses than

when controlling dependent effect sizes (Kim, 1999). However, when correlation among

dependent effect sizes is too low or when we are not sure if the effect sizes are dependent or

not, then just combining or pooling effect sizes might bring some problems.

As mentioned above, in meta-analyses the effect-size analysis can involve two levels of

statistical tests. Two types of decision-making errors in the first-stage homogeneity test can also

affect the second-stage test of the magnitude of the common effect size. The main purpose of

this research is to study the impact of pooling effect sizes on homogeneity test in effect size

analyses.

Paper presented at the annual meeting of the American Educational Research Association, New
Orleans, April, 2000.
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Nonindependence Issue

Landman and Dawes (1982) cautioned about five sources of nonindependence in meta-

analysis. First, they cite multiple measures of outcomes from the same subjects within single

studies; second, measures taken at multiple points in time from the same subjects (i.e., multiple

occasions); third, nonindependence of scores within a single outcome measure; fourth,

nonindependence of studies within a single article; and fifth, nonindependent samples across

articles (p. 506-507). The second through fifth cases can be controlled by careful decision-

making. For instance, when the same tests are examined several times in a study, only the last

occasion could be selected (e.g., Kulik, Kulik, & Cohen, 1979). The third case happens when a

study reports both a global index as well as more specific index, which is a part of the global

index. In this case, choosing the specific index is ideal if it allows the study of interesting

moderator variables. The fourth case occurs when some samples from two different

experiments in a study are overlapping or the same. The same decision-making may be applied

as used for the third case to arrive at independent samples. The last case may happen if the same

sample appears in two different articles. In this case the more informative article should be

selected. All four ways to treat nonindependence are used in this synthesis. However, the first

case cannot be controlled by a decision-making, but by statistical consideration.

One common approach to the situation is for the meta-analyst to use all the statistics

available in a particular study to calculate one mean effect size (Tracz, Elmore, & Pohlmann,

1992). The typical analysis then to treats each effect size from a given study as independent of

the other effect sizes from the same study (e.g., Smith, Glass, & Miller, 1980). However, Glass,

McGaw, and Smith (1981) recognized that "the data set to be analyzed [in a meta-analysis] will

invariably contain complicated patterns of statistical dependence [since] each study is likely to

yield more than one finding" (p.200). Bangert-Drowns (1986) stated, "multiple effect sizes

from any one study cannot be regarded as independent and should not be used with statistical

tests that assume their independence" (p. 397). In the same article (p. 392), he discussed the

"Inflated Ns" problem. A report can have a greater influence on the meta-analytic findings if it

uses many dependent measures. The "Inflated Ns" problem threatens the generalizability or

external validity of a meta-analysis. Another problem is inflated Type I error (Raudenbush et

al., 1988). Strube (1983) mentioned a general rule, that is, failure to adjust for nonindependence

inflates the Type I error rate at the meta-analysis level.

Researchers have devised several methods for combining dependent data in meta-

analysis. A strategy for reducing dependence of data is to select, on some predetermined basis,
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a single dependent measure to represent each study (Cooper, 1979). But, the question "what is

the best indicator among several dependent variables?" is too ambiguous. It is very difficult to

make such a decision. A common strategy for dealing with studies that use multiple outcomes

has been to average. This makes sense for providing a representative effect size estimate when

the outcomes are parallel measures of a single construct (Raudenbush et. al., 1988). Instead of

the mean, the median effect size is a more conservative option. Raudenbush et al. (1988) refer

to this approach as study effect meta-analysis (p. 393) because of treating the study as the unit

of analysis.

A statistical solution for this nonindependence problem within a study has been

developed by Rosenthal and Rubin (1986). When the study has a big sample size and small

differences of the intercorrelations between outcome measures, they suggest computing a

composite effect size. Gleser and Olkin (1994) also showed how to calculate composite effect

sizes within studies by using all individual intercorrelations among outcome variables. One

difference between these two procedures is that Rosenthal and Rubin (1986) use a "typical"

correlation, which is a correlation representative of all intercorrelations between the multiple

measures.

One common feature of above approaches is calculating a representative effect sizes for

dependent effect sizes. Combining dependent effect sizes to create one representative one for

one measure from same sample seems to be reasonable. However, if the dependence is not

certain, then just combining or pooling effect sizes may bring some problems for Type I error

rate and power rate for statistical test in meta-analysis, mainly due to reduced sample sizes.

Q statistics

The biased effect size for each study is computed by

(V. x,c)
(1)

where :VG, and Xi E are the means in the ith study and S, is the pooled standard deviation for

study i calculated as:

= 11(n 1)(SIE)2 (n 1)(Sic)2
nom. n ic 2

4

(2)
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where n,E and nic are the number of each compared groups. The unbiased effect size (corrected

for small sample bias) is calculated as

3T =d7x [1 (3)
{4 x (ni 2)

where n = n jE + n ic, with the conditional variance

ni di 2

niE x me 2m
(4)

(Hedges & Olkin, 1985). The sample size varies across studies. Since estimates from the larger

studies are more precise than estimates from smaller studies, larger studies are given more

weight when the effects are pooled. The weight w, = 1/v, is used. A pooled effect, or weighted

mean effect (T.) can be calculated as:

with a variance

1
V. =

1=1

()
Vi

4

(5)

(6)

(Shadish & Haddock, 1994, p.265). In order to determine whether the studies can reasonably be

described as sharing a common effect size, the following statistical test for homogeneity of

effect size was performed (Hedges & Olkin, 1985):

Q Ek (Ti T.)2

i=i vi

The test statistic Q has an asymptotic chi-square distribution with k 1 degrees of freedom.

When test statistic Q is greater than the critical value with k-1 degree of freedom, it is

determined that the synthesis has heterogeneous data.

(7)
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If the (5; as a parameter effect sizes are not equal then Q has a noncentral chi-square

distribution k-I degree of freedom and noncentrality parameter (Chang, 1992).

=
8

,
.

2

Methods

Based on the main question "What are the effects of pooling effect sizes on Type I error

rate and power of the Q test for varying study sample size (N), number of studies (k), and

proportion of pooling effect sizes (p) in the k studies?" following procedures were

implemented.

Simulation factors

The factors and their values reflect those of Harwell (1995), Chang (1992), and Hedges

and Olkin (1985). Based on normal distribution of scores, numbers of effect sizes modeled were

k = 5, 10, and 30 with group sample sizes of 10-10, 30-30 and an extreme value of 300-300. A

reason of including one extreme sample size of 300 was to see its particular tendency about

Type I error rate. In fact, there are many primary studies that contain more than 300 sample

sizes in real setting. Unequal sample sizes were not included, but three different proportions of

pooling effect sizes were considered. They were 20, 40 and 60% of the whole effect sizes. For

instance, 2 effect sizes were assumed to correlate (i.e., came from same sample of one primary

study) out of 5 studies when 40% proportion was used. Thus, the number of pooling effect sizes

varied across different study sizes. These proportion of pooling effect sizes and studies were

based on the author's last study (Kim, 1999). Pooling effect sizes were considered came from

one, two, or three samples (primary studies) for each k = 5, 10 (except 20% proportion case),

and 30 respectively. The noncentrality patterns were shown in Figure 1 including other factors.

Only one value of 8 was used because of its simplicity and middle size considering Chang

(1992) and Harwell (1995).

Insert Figure 1 about here
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Data generation

The data generation was done using MATLAB 5.3. The procedures were as follows.

(A) Sample effect sizes were obtained from noncentral t statistics, computed using normal

deviates and chi-squared random numbers generated. (B) Constants equal to the specified delta

values were added to scores to create the desired noncentrality pattern as way of Chang (1992).

The formula used for part (A) and (B) is as follow. (a) Got a normal deviate (Z1). (b) Multiplied

Zi by IAN; / n. ti) . (c) Added noncentrality pattern of 8. (d) And divided it by 11Ch, / df

where Chi is a chi-square random number (Chang, 1992). (C) For composite meta-analysis,

mean effect size(s) for each specified studies was (were) gained before computing Q statistic.

(D) The Q statistic was computed for the k effect sizes using equation (7) for each typical and

composite effect sizes, (E) Step (A) to (C) were repeated 2000 times [the same number of

replications employed by Harwell (1996), Chang (1992), and Hedges and Olkin (1985)] for

each combination of simulation factors. The proportions of significant Q tests across the 2000

replication represented empirical type I error rates and power values from typical and composite

meta-analysis were compared to see the effect of pooling of effect sizes on the Q test. Overall 3

(different proportion of pooling effect sizes; 2 when k = 5.) X 3 (number of studies) X 3

(sample sizes) X 4 or 5 (sets of 6 values) design was replicated.

Results

Adequacy of the simulation

One evidence of adequacy of the simulation is the mean effect sizes across the

conditions studied. Table 1 shows mean effect sizes from 2000 simulation.

Insert Table 1 about here

For instance, all numbers in three first patterns of each proportion are pretty closer to

zero, which indicates adequacy of the simulation. Another evidence is that Type I error rates

and Power rates for typical meta-analysis are similar to theoretical rates. Those Type I error

rates are close to 5.0 and delta pattern 2 and 5 (4 when k = 10) in 60% proportion possess pretty

close values with theoretical values (See Table 2).
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Insert Table 2 about here

Type I error rates of the Q test

The first rows of each proportion represents empirical error rates since delta pattern

does not include any nonzero of 8. All of Type I error rates are pretty close to .05 for typical

cases when sample sizes are big (30 and 300). Comparing Type I errors between typical and

composite meta-analysis, composite meta-analysis always has smaller Type I error rates than

typical case. This finding implies that pooling effect sizes is too conservative to reject the null

hypothesis. One particular feature is that the difference of Type I error rates between two

approaches is increasing when proportion of pooling effect sizes is increasing. This implies that

the more pooling effect sizes a meta-analysis possesses, the more conservative the analysis is in

rejecting the null hypothesis. Figure 2 presents this tendency clearly. Most cases show

increasing Type I error rate difference (typical minus composite meta-analysis) across the

proportion of pooling effect sizes.

Insert Figure 2 about here

Power of the Q test

When delta has not zeros, the sets estimate power values for the Q test. These values

have similar patterns to the Type I error. Since most of power rate close to 1 when sample size

is 300, it would be not explained from now. Power was largest for a given delta when n (fixing

k) and k (fixing n) were larger. This tendency agrees with Chang (1992) and Harwell (1995),

even if the values are a little different. Power for typical meta-analysis is always greater than

composite meta-analysis. This means that composite meta-analysis underestimates statistical

power that is supposed to. In other words, when independent effect sizes are considered as

dependent, the statistical inference about Q statistic might overestimate Type II error and

underestimate statistical power. Factors affecting the differences were detected with Figure 3.

Insert Figure 3 about here
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When sample sizes, number of studies, and number of .5 of deltas in pooling effect

sizes is bigger, the power difference (typical minus composite meta-analysis) between typical

and composite meta-analysis is bigger. This indicates that under above conditions there are

more possibilities for composite meta-analysis to overestimate Type II error and underestimate

power of the Q test.

Conclusions

Composite meta-analysis seems to have smaller Type I error than typical meta-analysis.

The difference in Type I error between typical and composite meta-analysis is relatively big

when sample size and/or number of studies is big. This finding can be explained as follows.

Composite meta-analysis is too conservative to reject the null hypothesis of homogeneity test.

Then people tend to retain the null hypothesis when the alternative hypothesis is true. In turn,

for example, people tend to use fixed effect model, to test if grand mean effect size is

significant. Then, people tend to reject the null hypothesis of grand mean effect size test even if

the alternative hypothesis is false because one uses smaller standard error than supposed to.

Finally, people more likely commit Type I error for the test of grand mean effect sizes.

Harwell (1995) summarized that Chang (1992) suggested that meta-analysts should be

concerned about the Type II errors since a Q test which was under-powered would lead to an

unacceptably high probability of wrongly concluding that the model fits the data (p. 2). This

study showed that composite meta-analysis always has greater Type II error and smaller power

than typical meta-analysis. The difference in power rate between typical and composite meta -

analysis is relatively big when sample size, number of studies, and number of .5 of deltas in

pooling effect sizes is big. Thus more cautions are necessary when pooling (or combining)

effect sizes.

In the future, a study to see the impact of dependence of effect sizes on Type I error &

power rate of homogeneity test when ignoring the dependence might be pursued. For this, since

the correlations among the dependent effect sizes might be taken account, Harwell (1995)'s

previous data generation procedures and Gleser & Olkin (1994)'s formulas to generate

dependent effect sizes are necessary to generate dependent effect sizes. In addition, it would be

nicer if we can see the effect of dependence on random effect model of homogeneity too.
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Figure 1. Pattern of pooling effect sizes with values of deltas

* pd: proportion of pooling effect sizes in a meta-ana;ysis
** delta: Patterns of deltas
*** k: Numer of studies
**** k composite: Number of studies after pooling effect sizes
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Figure 2. Type I error difference between typical and
composite meta-analysis
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Figure 3. Power difference between typical and composite meta-analysis
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Abstract

One typical feature of meta-analyses is treating multiple outcomes from single samples as

if they were independent in calculating a grand mean effect size. Ignoring the intercorrelations

among effect sizes affects the Type I error rate. However, when correlation among dependent

effect sizes is too low or when we are not sure if the effect sizes are dependent or not, then just

combining or pooling effect sizes might bring some problems. The main purpose of this research

is to study the impact of pooling effect sizes on homogeneity test in effect size analyses. Based on

the main question "What are the effects of pooling effect sizes on Type I error rate and power of

the Q test with 3 sample sizes, 3 number of studies, 3 proportion of pooling effect sizes in the k

studies, and 4 or 5 kinds of noncentrality patterns?", 2000 replications were implemented.

Composite meta-analysis seems to have smaller Type I error than typical meta-analysis.

The difference in Type I error between typical and composite meta-analysis is relatively big when

sample size and/or number of studies is big. This finding implies that composite meta-analysis is

too conservative to reject the null hypothesis of homogeneity test, in turn, has more likely higher

Type I error and lower power for the test of grand mean effect sizes. This study also showed that

composite meta-analysis always has greater Type II error and smaller power than typical meta-

analysis. The difference in power rate between typical and composite meta-analysis is relatively

big when sample size, number of studies, and number of .5 of deltas in pooling effect sizes is big.

This results recommend that more cautions are necessary when pooling (or combining) effect

sizes.
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